Computing Science Course Outlines 2020 Fall

CMPT 307 - D100 Data Structures

Instructor(s): Tom Shermer

SFU Burnaby

Calendar Objective/Description:
Data Structures

Instructor's Objectives:
The objective of this course is to introduce concepts and problem-solving techniques that are used in the design and analysis of efficient algorithms. This is done by studying various algorithms, algorithmic techniques, and data structures.

Prerequisites:
see go.sfu.ca

Topics:
- Introduction and Mathematical Preliminaries (Review): Models of Computation, Big-O Analysis
- Searching and Sorting: Divide & Conquer Paradigm, Analysis of Recurrences, Master Method
- Sorting and Order Statistics: Heapsort, Quicksort, Non-comparison sorts, Lower bounds, Median
- Randomized algorithms, Average case analysis
- Simple Data Structures: Lists, Stacks, Queues, Trees
- Dictionaries and Priority Queues: (Balanced) Binary search trees, Heaps
- Graphs: Representations, Path Searching, Spanning Trees
- Amortized Analysis: Aggregate, Accounting, Potential Methods
- Optimization Problems: Dynamic programming, Greedy algorithms
- NP-Completeness

Grading:
The course has a final examination, homework assignments, and quizzes or midterms. The grade distribution will be announced during the first week of classes.

Students must attain an overall passing grade on the weighted average of exams in the course in order to obtain a clear pass (C- or better).

Required Books:

Reference Books:
Algorithm Design , J. Kleinberg, E. Tardos, Addison-Wesley, 2006, 9780321295354

Academic Honesty Statement::
Academic honesty plays a key role in our efforts to maintain a high standard of academic excellence and integrity. Students are advised that ALL acts of intellectual dishonesty will be handled in accordance with the SFU Academic Honesty and Student
Conduct Policies (http://www.sfu.ca/policies/gazette/student.html).